博彩评级网-博彩网

專 欄

首 頁

專 欄

學術報告(李進開,華南師范大學研究員,2019.05.31)

學術舉辦時間 2019年05月31日 14:00-15:00 學術舉辦地點 理學實驗樓312報告
主講人 李進開 主題 Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations ??(2019030)

學術報告

報告題目Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations   (2019030)

報告人:李進開(華南師范大學 研究員)

報告時間:20190531日(周五)下午14:00-15:00

報告地點:理學實驗樓312

 

報告摘要The entropy is one of the fundamental physical states for compressible fluids. Due to the singularity of the logarithmic function at zero and the singularity of the entropy equation in the vacuum region, it is difficult to analyze mathematically the entropy of the ideal gases in the presence of vacuum. We will present in this talk that an ideal gas can retain its uniform boundedness of the entropy, up to any finite time, as long as the vacuum presents at the far field only and the density decays to vacuum sufficiently slowly at the far field. Precisely, for the Cauchy problem of the one-dimensional heat conductive compressible Navier-Stokes equations, in the presence of vacuum at the far field only, the local and global existence and uniqueness of strong solutions, and the uniform boundedness (up to any finite time) of the corresponding entropy have been established, provided that the initial density decays no faster than $O(\frac{1}{x^2})$ at the far field. By introducing the Jacobian between the Euler and Lagrangian coordinates to replace the density as one of the unknowns, we establish the global existence of strong solutions, in the presence of vacuum, and, thus, extend successfully the classic results in [1,2] from the non-vacuum case to the vacuum case. The main tools of proving the uniform boundedness of the entropy are some weighted energy estimates carefully designed for the heat conductive compressible Navier-Stokes equations, with the weights being singular at the far field, and the De Giorgi iteration technique applied to a certain class of degenerate parabolic equations in nonstandard ways. The De Giorgi iterations are carried out to different equations to obtain the lower and upper bounds of the entropy.

[1] Kazhikhov, A. V.: Cauchy problem for viscous gas equations, Siberian Math. J., 23 (1982),44-49.

[2] Kazhikhov, A. V.; Shelukhin, V. V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.

 

個人簡介:李進開,男,博士,研究員,博士生導師。2013年博士畢業于香港中文大學數學研究所,導師為辛周平教授。20138月至20167月在以色列魏茨曼科學研究所從事博士后研究工作,合作導師為Edriss S. Titi教授,20168月至20187月在香港中文大學數學系任研究助理教授,20188月起在華南師范大學華南數學應用與交叉研究中心任研究員。主要研究方向為流體動力學偏微分方程組,具體包括大氣海洋動力學方程組、可壓縮Navier-Stokes方程組等,相關成果發表于CPAM, ARMACPDE, JFA等雜志,入選第14批國家重大人才工程項目入選者。

 

上一條:地理學人講壇第215講 下一條:土木工程學院學術講座--叢正霞教授

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

鑫鼎百家乐娱乐城| 百家乐官网天下第一缆| 百家乐赌博出千| 土豪百家乐的玩法技巧和规则| 大发888娱乐官网地址| 高唐县| 大世界百家乐官网娱乐| 百家乐在线赌场娱乐网规则| 卡迪拉娱乐| 百家乐断缆赢钱| 老江死了| 金博士百家乐官网的玩法技巧和规则 | 凱旋門百家乐娱乐城| 大发888直播网| 百家乐官网发牌器8副| 15人百家乐桌布| 永利百家乐官网娱乐| 百家乐如何买大小| 手游| 金彩百家乐官网的玩法技巧和规则| 威尼斯人娱乐场 赌场网址| 蒙特卡罗娱乐场| 太阳城橙翠园| 宝龙百家乐官网的玩法技巧和规则| 威尼斯人娱乐城注册网址| 百家乐官网波音平台开户导航 | e世博备用网址| 单机百家乐的玩法技巧和规则| 百家乐官网赌博千术| 机器百家乐软件| 至尊百家乐官网20111110| 娱乐城百利宫娱乐| 网上现金游戏| 百家乐玩法及技巧| sz新全讯网xb112| 百家乐预测神法| 大赢家百家乐官网66| 利高百家乐的玩法技巧和规则| 永利博百家乐官网的玩法技巧和规则| 真人百家乐官网海立方| 洛宁县|